
 

 

Latency-Information Theory and Applications. Part I:  
On the Discovery of the Time Dual for Information Theory 

 
Erlan H. Feria 

The College of Staten Island (CSI) of the City University of New York (CUNY)  
Department of Engineering Science and Physics 

2800 Victory Blvd, Staten Island, New York, 10314 
e-mail:feria@mail.csi.cuny.edu, website:http://feria.csi.cuny.edu 

 
 

ABSTRACT 
 
As part of research conducted on the design of an efficient clutter covariance processor for DARPA’s 
knowledge aided sensor signal processing expert reasoning (KASSPER) program a time-dual for information 
theory was discovered and named latency theory, this theory is discussed in this first of a multi-paper series. 
While information theory addresses the design of communication systems, latency theory does the same for 
recognition systems. Recognition system is the name given to the time dual of a communication system. A 
recognition system uses prior-knowledge about a signal-processor’s input to enable the sensing of its output 
by a processing-time limited sensor when the fastest possible signal-processor replacement cannot achieve 
this task. A processor-coder is the time dual of a source coder. While a source coder replaces a signal-source 
to yield a smaller sourced-space in binary digits (bits) units a processor coder replaces a signal-processor to 
yield a smaller processing-time in binary operators (bors) units.  A sensor coder is the time dual of a channel 
coder. While a channel coder identifies the necessary overhead-knowledge for accurate communications a 
sensor coder identifies the necessary prior-knowledge for accurate recognitions. In the second of this multi-
paper series latency theory is successfully illustrated with real-world knowledge aided radar. 
 
Keywords: space-time dual, time dual, latency, latency theory, information, latency-information theory, 
sourced-space, motion-time, processing-time, retention-space, bits, bors, processor ectropy, source entropy, 
sensor consciousness, channel capacity, knowledge aided, intelligent system, biology 
 
 
1. INTRODUCTION 
 

A real-world problem whose high performance is attributed to its use of an intelligent system (IS) is 
knowledge-aided (KA) airborne moving target indicator (AMTI) radar such as found in DARPA’s knowledge 
aided sensory signal processing expert reasoning (KASSPER) [1]-[2] program. The IS’s intelligence, or prior 
knowledge, is clutter synthetic aperture radar (SAR) imagery and its intelligence processor (IP), or on-line 
computer, is the associated clutter covariance processor. Unfortunately, however, the excellent signal to 
interference plus noise ratio (SINR) radar performance achieved directly depends on satisfying prohibitively 
expensive storage and computational requirements. The former ‘storage’ problem is easily addressed by using 
a highly efficient lossy source coding technique, e.g., a minimum mean squared error (MMSE) predictive-
transform (PT) source coder [3] that compresses a typical SAR image by several orders of magnitude: a 
MMSE PT source coder is used rather than the JPEG2000 standard [4] since the PT coder outperforms JPEG 
by at least 5dB in this application [5]. Yet, a lossy source coder compressor seriously compromises the  SINR 
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radar performance. Thus one seeks the replacement of the clutter covariance processor with a processor that is 
better matched to highly compressed SAR imagery. 
 

In this paper, the discovery of a time dual for information theory, named latency theory, is reported. 
Latency-theory offers a time dual for all the concepts found in information theory. Among them is that of a 
recognition system as the time dual of a communication system where a recognition system uses prior-
knowledge about a signal-processor’s input to enable the sensing of its output by a processing-time limited 
sensor when the fastest possible signal-processor replacement cannot achieve this task. Other concepts are a 
sensor as the time dual of a channel, a processor coder as the time dual of a source coder, and a sensor coder 
as the time dual of a channel coder. While a source coder replaces a signal-source to yield a smaller sourced-
space in binary digits (bits) units a processor coder replaces a signal-processor to yield a smaller processing-
time in binary operators (bors) units.  Similarly to a source coder a processor coder can be lossy or lossless. 
While a channel coder identifies the necessary overhead-knowledge for accurate communications a sensor 
coder identifies the necessary prior-knowledge for accurate recognitions. Furthermore, there are time duals 
for the source-space performance bounds of source-entropy H in source-space bits per given discrete random 
variable source knowledge output to be communicated, and channel-capacity C in source-space bits per 
channel-space bits, a dimensionless quantity less than or equal to one, that are used in the design of channel 
and source integrated (CSI) coders. The time duals of H and C are the processor-ectropy K and sensor-
consciousness F, respectively, used in the design of sensor and processor integrated (SPI) coders. K and F 
are processor-time performance bounds in processor-time bors per given vector variable processor knowledge 
output to be recognized, and sensor-time bors per processor-time bors, a dimensionless quantity less than or 
equal to one, respectively.  

 
Since latency theory inherently encapsulates the idea of a lossy processor it directly addresses the 

aforementioned need for such a processor to replace the lossless clutter covariance processor of real world 
prior knowledge radar. In the second [6] of this multi-paper series a lossy clutter covariance processor is 
discussed that yields outstanding SINR radar performance while being several orders of magnitude faster than 
the original lossless clutter covariance processor. Due to its outstanding performance and low cost the 
advanced lossy processor architecture has been adopted by KASSPER. The discovery of latency theory 
occurred in an incremental fashion as part of contractual work conducted by the author for DARPA’s 
KASSPER program [7] as well as part of proposed work for several PSC-CUNY Research Awards [8]. As 
the new latency theory concepts were found they were also disseminated to the general public at different 
stages of its development [9]-[16]. Thus in this paper the results of several years of research in the 
development of latency theory as the time dual of information theory are presented in a concise and straight 
forward manner for its general use in science, technology, humanities, and social sciences problems as is 
already found to be the case with information theory [17]. In this paper I will first review the basic elements 
of information theory and then present its time dual, i.e., latency theory. 
 
2. INFORMATION THEORY 
 

Information theory’s communication system is presented in block diagram form in Fig. 1. It consists of 
three major subsystems. The first is a source-coder (encoder/decoder) which replaces an inefficient signal-
processor to yield a smaller sourced-space. Source-coders can be lossy or lossless. For instance, in Fig. 2a a 4 
Mbytes synthetic aperture radar (SAR) image is shown that is compressed/decompressed by a lossy MMSE 
PT source coder [5] by a factor of 8,172 as shown in Fig. 2b. Although this compressed image looks rather 
lossy, the actual application determines its usefulness, e.g., in the knowledge aided radar application of 
KASSPER this compressed image yields outstanding target detections when used in conjunction with a lossy 
processor [6]. The second subsystem is a channel coder (encoder/decoder) that identifies overhead-knowledge 
to transmit for a more accurate communication of the sourced-space compressed knowledge. The third 
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subsystem is what I call a motion-coder (encoder/decoder) which is responsible for the motion of the channel 
encoder output knowledge for some prescribed motion-space interval (or space-dislocation). For instance, this 
motion-coder may be a modulation-antenna subsystem. However, the design of this subsystem, as opposed to 
that of a source coder and channel coder, is not directly addressed by information-theory. Instead for the 
design of a motion-coder we use the laws of motion in physics, e.g., as is done when Maxwell’s equations 
and spectral analysis are used to design of an appropriate modulation-antenna system.  

 
As mentioned earlier two performance bounds are used to guide us in the design of a channel and source 

integrated or CSI coder. The first bound is the source-entropy H which is defined as the average amount of 
information in a discrete random variable (or knowledge) { }Uoo ,...,1∈X , i.e.,  

  ][][
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=H     in bits per X                                                      (2.1) 

where IS[oi] is the source-information advanced by the source outcome oi and defined by  
   ])[/1(log)( 2 iiS oPoI =  in bits  per oi                                                      (2.2) 

with the probability P[oi] being a measure of oi‘s uncertainty, which is in turn driven by the passing of time 
[17]. A source-coder’s design is then approached using H as a performance bound. In particular, the source 
encoder rate RSE in bits per X reflects a sourced-space penalty incurred by the source coder. Thus when RSE is 
greater than or equal to the source-entropy H—and less than or equal to the source rate RS, i.e., 

SSE RR ≤≤H                                                                  (2.3) 
we say that the source coder is lossless and when RSE is smaller than H we say that the source coder is lossy. 
Thus it can be said that a lossy source coder has a source-space advantage over a lossless source coder since 
its sourced-space penalty is lower. As an illustration see Fig. 2 where RS= 16 bits/pixel > H > 4 bits/pixel > 
RSE=1.24 x 10-6 bits/pixel. Note that the compression factor for this image is 512 bytes per 4Megabytes or 
8,172. Thus the sourced-space penalty associated with this lossy source coder is at least four orders of 
magnitude less than that of the best lossless source coder since H > 4 bits/pixel. 
 

The second bound used is channel-capacity C [17] which is defined here as the maximum achievable CSI 
coder-ratio RCSI. RCSI is defined as the ratio of communicated RSE, com

SER (= k bits/outcome), to space-dislocated 
channel-encoder rate RCE (= n bits/outcome) through a noisy-channel, i.e., 

10 ≤==≤ n
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                                                         (2.4) 

where com
SER is smaller than RCE. RCSI is achievable when com

SER is reconstructed by the channel-decoder with an 
arbitrarily small probability-of-error (a CSI-coder is said to be “lossless” if it satisfies this condition, 
otherwise it is said to be “lossy”). A simple example of a channel encoder is one that adds a parity-bit to each 
transmitted byte. This additional bit then permits the channel-decoder to determine if one of the 9 transmitted 
bits is in error. More than one bit can be concatenated with the byte to also produce error corrections. For a 
memoryless noisy-channel [17, 19], with its input En and output Fn denoting n-bits codewords for each 
communicated outcome, C is defined by 
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where I(En,Fn) is the mutual-information, H(En/Fn) is the decreased entropy of En after Fn is observed, 
and Min

CER is the minimum RCE yielding the maximum achievable RCSI. En is the random-code-word En whose 
probability-distribution {P[ei]} maximizes the mutual-information ratio I(En,Fn)=I(En,Fn)/H(En). For 
instance, En has a uniform probability-distribution when the channel is binary-symmetric and is Gaussian for 
an additive-Gaussian channel [17,19].  
 

The channel-capacity C guides the design of either lossless or lossy CSI-coders. A lossless CSI-coder 
is characterized by an achievable RCSI, i.e.,  

C≤≤ CSIR0                                                                  (2.6)  

and is ideal when C=CSIR . A lossy CSI-coder has a RCSI that is not achievable, i.e., 
1≤< CSIRC                                                                  (2.7) 

The previously described source-space performance bound methodology is also known as channel-
coding or “the mathematical theory of communication” of Shannon [20]. Information rate-distortion theory 
which defines a distortion channel-capacity (or rate-distortion function) [17, 19] is also available to guide the 
design of lossy CSI-coders. These two theories are embraced by information-theory which may include other 
information topics. However, as mentioned earlier motion-coders are not included as part of information-
theory but rather their design is relegated to the use of the laws of motion in physics for their design. 

 
3. LATENCY THEORY 
 

In this section the time dual of information theory, i.e., latency theory, is advanced. Consider Fig. 3 which 
is the time dual of the communication system of Fig. 1 to which I have given the name recognition system. A 
recognition system uses prior knowledge about a signal-processor’s input to facilitate the sensing of its output 
by a processing-time limited sensor when the fastest possible signal processor replacement cannot achieve 
this task. Similarly to a communication system a recognition system has three major subsystems.  

 
The first subsystem is a processor-coder (the time dual of a source-coder) which replaces an inefficient 

signal-processor to yield a smaller processing-time. Processing-coders can be lossy or lossless. For instance, 
in Fig. 4a an inefficient full-adder signal processor is shown which requires at most six bor levels of 
computation-time to yield the vector output  y=[si ci+1] given the vector input x=[ai bi ci].  where ai and bi are 
the two added bits, ci is the carry in bit, si is the sum bit, and ci+1 is the carry out bit. On the other hand, in Fig. 
4b the fastest possible replacement for the inefficient full-adder signal processor is shown which requires at 
most 3 bor levels of computation-time to yield y. Finally is Fig. 4b a lossy processor-coder is shown whose 
output yy ≠= + ]  0[ˆ 1ic does not require the evaluation of si and thus results in only 2 bor levels of 
computation-time with also a significantly simpler implementation. The second subsystem is a sensor coder 
(the time dual of a channel coder) that identifies the necessary prior-knowledge for a more accurate 
recognition of the processing-time compressed knowledge. The third subsystem is what I call a retention-
coder (the space dual of a motion-coder) which is responsible for the retention of the sensor coder output 
knowledge for some prescribed retention-time interval (or time-dislocation). After latency theory is discussed 
we will return in the paper ending conclusion section to a discussion of the retention-coder in the context of a 
physics problem. 
 

The sensor of a recognition system is the time dual of the channel of a communication system. While a 
channel is linked to a source-space space dislocation a sensor is linked to a processing-time time dislocation. 
A simple illustration of the necessary processing-time time dislocation of a recognition system is when a 
sequential adder that uses the fastest possible 1-bit full-adder of Fig. 4b to add two bytes is required by the 
sensor to yield its output in a maximum of 12 bors. Since this full adder requires at least 16 bors to add two 
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bytes it is then necessary to perform a time dislocation of the processing-time to an earlier time by at least 16-
12= 4 bors. Thus the only solution to this problem that satisfies the stated sequential processing constraint is 
to use prior knowledge about the sequential adder input to start the processor 4 bors earlier in time. The 
device that determines what this prior knowledge should be is called a sensor coder and is the time dual of a 
processor coder. Using our running example to illustrate this concept we can start the processing earlier in 
time by four bors if it is known that all the bits of the two added bytes always occur at the same time and it is 
assumed that the two least significant bits of the two bytes can be replaced with the pairs of bits 10 and 01, 
respectively, without resulting in a significant error on the resulting addition. The recognition system that 
results from this design approach is then called a sensor and processor integrated or SPI coder. In addition, 
the four bits 10 and 01 can be kept in storage in the retention-coder by the sensor coder where the design of 
the retention-coder is not addressed by the latency theory in its present form. In [22] the performance bound 
approach of information theory, developed next for its time dual, i.e., latency theory will also be applied to 
the design of motion-coders and retention-coders that are needed for general recognition/communication 
systems. 

 
Next the time duals for the two performance bounds of information theory are stated. 
 
The first performance bound that is considered is the processor-ectropy K—the time dual of the source-

entropy H—which is defined as the maximum amount of latency for a processor vector output [ ]Jyy ,...,1=y , 
i.e.,  

                                    K = max(LP(y1),..,LP(yJ))   in bor units per y                                                (3.1) 
where LP[yi] is the processor-latency of yi which is defined as the minimum processing-time that is needed to 
obtain yi after the original signal processor, say the 1 bit full adder of Fig. 4a, is redesigned subject to 
implementation constraints {C[yi]}—for example, the constraints can be NAND gates that can have any 
number of inputs as is illustrated in Fig. 4b from which we derive LP(ci+1)=2 bors/ci+1, LP(si)=3 bors/si and 
K=max(LP(ci+1), LP(si)) =3 bors/y. Thus  

                                 L(yi) = f(C[yi])   in bors units per yi                                                       (3.2) 
 

with f(C[yi]) indicating that L(yi) is a function of C[yi]. The constraint C[yi] is the time dual of probability 
P[oi] and is driven by a configuration of space certainty, i.e., the ‘certain’ occupancy-space in m3 occupied by 
the implemented NAND gates. 

The processor-coder rate RPC is the time-dual of RSC, e.g., RPC=3 bors/y for Fig. 4b. A lossless processor-
coder is the time-dual of a lossless source-coder. It has a RPC achievable, i.e., 

 
 PPC RR ≤≤K                                                                      (3.3) 

  
It is also ideal when RPC=K and is equivalent to the signal processor when RPC=RP. In Fig. 4b an ideal 
processor-coder is displayed with K=3 bors/y. On the other hand, a lossy processor-coder is the time-dual of 
a lossy source-coder. It has a RPC that is not achievable, i.e., 
 

 K<≤ PCR0                                                                        (3.4) 
 
but is faster and simpler than a lossless one as illustrated in Fig. 4c where RPC = 2 bors/y < K = 3 bors/y  and 
si is not evaluated. 
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The second performance bound that must be used in the design of a recognition system is sensor-
consciousness F—the time dual of channel capacity C. This performance bound is linked to the occurrence of 
a processing-time limited sensor (PTLS) condition. This condition is given by  

                                                    K > W                                                                             (3.5) 
where W is the maximum waiting time in bors of the sensor, e.g., W was assumed earlier in our example to be 
of 12 bors when the full output of a 1-bit full-adder of Fig. 4b was sensed. Since K is at least 16 bors for this 
example it then follows that the PTLS condition is satisfied for this case. Notice that unless the PTLS 
condition is satisfied there is not need for the use of prior knowledge to advance or time dislocate the 
processing-time since all we need to do is build a lossless processor with WRPC ≤ . Thus when the PTLS 
condition (3.5) is not satisfied we do not need a recognition system. On the other hand, when the PTLS 
condition is satisfied the positive difference 
                                                                          TD = K –W                                                                          (3.6) 

 
tell us about the necessary time dislocation (TD) of computation-time that must be addressed by the sensor 
coder via the use of prior knowledge. The sensor consciousness F can now be defined and is given by the 
expression  

1   0 ≤=≤
K
WF                                                                      (3.7) 

where for our running example it is noted that F=12/16=0.75.  
 

The definition for sensor-consciousness can also be stated as the time-dual of that for channel-capacity 
(2.4)-(2.7). F is then the maximum achievable SPI-coder ratio RSPI where RSPI is given by the ratio of rec

PCR  to 

the sensor-coder rate RSC. rec
PCR  is the recognized RPC and thus is the same as the maximum waiting time W of 

the sensor, i.e., rec
PCR =W, while RSC is equal to rec

PCR  plus the amount of time-dislocation, i.e., RPC- rec
PCR , that it 

can provide via the use of prior knowledge.  Thus RSC= rec
PCR + RPC- rec

PCR =RPC where RPC is equal to T, the 
processing-time of the processor-coder in bors, per y. Thus 

10 ≤≤ == T
W

SCR
R

SPIR
rec
PC .                                                               (3.8) 

RSPI is achievable when the processor-coder is both lossless and has an output arbitrarily close to the signal-
processor’s output (MSE can be used as a measure). The sensor-consciousness then follows from  
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where: a) {C[yi]} is the signal-processor redesign constraint; b) ti is the original signal-processor starting-
time; c) K(y) is y’s ectropy under the constraint {C[yi]}; d) K(y/z(ti+W)=y(ti+T))=K(y)- rec

PCR  is the decreased 
K(y) after y is time-dislocated from ti+T to ti+W and sensed. z(ti+W) is the sensor output at time ti+W; e) 
L(y,z)=K(y)-K(y/z(ti+W)=y(ti+T))= rec

PCR  is y’s recognized ectropy after y is time-dislocated and sensed. This 
quantity is a mutual-latency because a time-dislocation reversal yields the same recognized ectropy, i.e., 
L(y,z)=L(z,y). Note that L(z,y)=K(z)-K(z/y(ti+T)=z(ti+W))= rec

PCR  since K(z)= rec
PCR  is z’s ectropy and 

K(z/y(ti+T)=z(ti+W))=0 is z’s remaining ectropy after z is time-dislocated to ti+T and sensed; f) 
L(y,z)=L(y,z)/K(y) is the mutual-latency ratio; g) K(y) is the smallest among all possible K(y) cases. For 
instance, K(y)=min(6,3)=3-bors/y for the example of Fig. 4 since K(y)=6-bors/y when {C[yi]} is limited to 2-
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input NAND-gates (Fig. 4a) and K(y)=3-bors/y when limited to 2 or more input NAND-gates (Fig. 4b); and 
h) Min

SCR =K(y) is the minimum RSC yielding the maximum achievable RSPI. 
       The sensor-consciousness F guides the design of either lossless or lossy SPI-coders. A lossless SPI-coder 
is characterized by an achievable RSPI, i.e.,  

F≤≤ SPIR0                                                                   (3.10) 

and is ideal when F=SPIR . A lossy SPI-coder has a RSPI that is not achievable, i.e., 
1≤< SPIRF                                                                 (3.11) 

The previously described sensor-consciousness performance-bound viewpoint is named sensor-coding and 
guides the design of recognition-systems. Thus, sensor-coding is the same as “the mathematical theory of 
recognition” just like channel-coding is the same as “the mathematical theory of communication” [21]. 
Moreover while information is the central-theme of communication, latency is of recognition. 
 

 A Note on the Selection of the Terms Latency, Ectropy and Consciousness. ‘Latency’ in latency theory 
was selected as the time dual of the term ‘information’ in information theory because it describes, for both 
artificial and living systems, the time interval “when something is initiated and the moment one of its effects 
begins” [24], which is the fundamental ‘time interval issue’ addressed by latency theory. On the other hand, 
‘ectropy’ in processor-ectropy has been selected as time dual of ‘entropy’ in source-entropy because while 
entropy refers ‘to tropy [25]’ (or to evaluate) the ‘en’ (or inner) space of a source by finding its sourced-space 
information, ectropy refers ‘to tropy’ (or to evaluate) the ‘ec’ (or outer) time interval of a processor by finding 
its processing-time latency. Finally, the term ‘consciousness’ in sensor consciousness has been selected as the 
time dual of ‘capacity’ in channel capacity because it refers to the waiting time interval over which the sensor 
is conscious. 
 
4. CONCLUSIONS 
 In this paper, the time dual of information theory has been advanced and named latency theory. Since 
latency theory is one of two pillars of a space-time duality that is firmly anchored on information theory [17] 
it promises to have general applicability in all science, technology, humanities and social sciences problems 
that require the replacement of complex signal-processors with simpler and faster processors that are better 
matched to processor inputs that are highly compressed in a lossy fashion due to severely taxing memory 
constraints. In the second of this multi-paper series [6] the latency theory philosophy is successfully applied 
to DARPA’s KASSPER program. The success of our latency theory in this real-world problem should also 
brings to light a better understanding of how biological systems achieve outstanding decisions while 
apparently only using highly compressed knowledge. This is the case, for instance, when a human after a new 
viewing expertly detects a human face seen only once before even though that face cannot be accurately 
described prior to such new viewing [23]. In the third paper of this multi-paper series [22], the recognition 
system of latency theory (Fig. [3]) is found to inherently lead to the discovery of a seminal space-time duality 
for physics. This space-time duality surfaces when it is noted that the design of a write/read device for prior 
knowledge retention (a recognition system problem) is the ‘space dual’ of the design of a transmitter/receiver 
device for knowledge motion (a communication system problem). Thus it is concluded that laws of motion in 
physics used in the engineering of a transmitter/receiver motion device must have a space dual that can be 
used in the engineering of a write/read retention device.  It is further hoped that this advanced latency-
information theory (LIT) perspective for physics should be useful in a unified guidance of both engineering 
science and physics problems. Such an approach may conceivably address in a rather straight forward manner 
significant theoretical questions in physics such as the development of a satisfactory quantum gravity theory 
as well as the production of more reliable predictions regarding future technological advancements. Finally it 
is hoped that LIT can serve in the near future as a significant pedagogical tool for a superior understanding 
and guidance of the design and implementation of complex systems. 
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                                          Fig. 1 Information Theory’s Communication System 
 
 
                        
 
 
 
 
 
 
 
 
 
 
                 Fig. 2  A) 4 Megabytes SAR Image of Mojave Airport in California 
                             B) 512 Bytes  SAR Image Encoded/Decoded With a MMSE PT Source Coder 
 

        
                                                  Fig. 3  Latency Theory’s Recognition System 
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                       Fig. 4  A)  Original Signal Processor;  B)  Lossless Processor Coder 
                                   C)  Lossy Processor Coder       
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