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PREDICTIVE TRANSFORM CODING

Erlan H. Feria

The College of Staten Island
City University of New York

ABSTRACT

In this paper a novel predictive transform
coding algorithm is offered for the bandwidth
compression of digital data. The algorithm uses
a subset of previously estimated data samples to
linearly predict the coefficients resulting from
the transformation of a data block. The algo-
rithm transform and predictor matrices are derived
by minimizing the mean square error between a
data block and its estimate subject to two con-
gtraints, These constraints are that the coeffi-
cient errors, i.e, the difference between the
transform coefficients and their estimates, must
be uncorrelated and also have zero mean value,
These constraints allow us to encode the coeffi-
cient errors using easily implementable unbiased
scalar quantizers, It 1s verified via an illus-
trative video application that the predictive
transform algorithm integrates the ease of imple-
mentation of predictive coding (12), (1), with
the high reproduction fidelity of transform coding
Cl1), (15 into a general and quite practical
bandwidth compression technique.

I.INTRODUCTION

Predictive transform coding arises from the
desire to obtain with a readily implementable coder
substantial bandwidth compression while still
deriving a high reproduction fidelity of the pro-
cessed data. The key property of a predictive
transform algorithm is that the coefficients re-
gulting from the transformation of a data block are
predicted using a subset of previously estimated
daty samples. The specific characteristics of our
alg@pithm that result in a readily implementable
coday with low reproduction distortion at high
comppession rates are several. These are: 1.
subgpt of previously estimated samples that are
used to predict each transform coefficient is com-
posed of only those samples which are significantly
correlated to the transform coefficients, 2. In
practical applications unbiased scalar quantizers
can be used to encode the coefficient errors be-
tween the transform coefficients and their predict-
ed values, This 1s the case since the algorithm
transform and predictor matrices minimize the mean
square error between a data block and its estimate
subject to the constraint that the coefficient
errors are uncorrelated and also have zero mean
value, Although scalar quantizers are only strict-
ly optimum in the case where the coefficient

The
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errors are also independent, e.g. for uncorrelated
gaussian data, it is often found that scalar quan-
tizers are quite adequate in applications dealing

with uncorrelated but dependent data samples (see

(5) and section IV).

3. In practical applications such as the
video example of section IV it is found that the
multiplications required by the transform and
predictor matrices can be easily implemented with
additions, subtractions, and register shifts,

This is due to the robustness of the predictor and
transform matrices which yleld excellent perform-

ance even when their optimum elements are roughly

approximated by readlly implementable values such

as 0, 1/2, 1/4, 3/4, etc.

4, Relatively small data blocks can yield low
reproduction distortion, This 1s agailn illustrat-
ed with our video example and origilnates from our
prediction of the transform coefficients via the
past data estimates that are most highly corre-
lated to the coefficient errors.

One fundamental byproduct of the general
nature of our algorithm is that 1t serves as a
natural bridge between two coding schemes, i.e.,
predictive coding and transform coding (5). We
then have that our algorithm serves the dual
purpose of providing a performance upperbound for
both predictive coding and transform coding.

For a comprehensive survey of the application
of predictive coding and transform coding to the
bandwidth compression of digital data the reader
is referred to the recent book by Jayant and Noll

).

II. CODER STRUCTURE

We now present the general structure of our
predictive transform coder as it relates to a two-
dimensional data block. The reason for using a
two~-dimensional data block is twofold. First it
clearly illustrates the general applicability of
the scheme and second it is used in the illustra-
tive video example of section IV,

The two-dimensional data upon which we apply
the predictive transform algorithm 1s illustrated
in Fig. 1, Note that each data block is represent-
ed by the vector

x(1) =[xy (1), 00 %y (1),.0,x, (1I° for all 1

where the index 1 denotes the time step at which

the block was generated, x,(i) denotes the j-th

data point in the 1-th bloék, N is the block size,

and W 1s the number of elements in the data block,
The structure of the proposed predictive
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transform coder is shown in figure 2 where each
major block in the coder 1s defined next.
Transform:

cGetl) = T lx(ied1) (1)
or W
x(k+1) = Te(k+l) = ElTici(kH) (2)
where: a) T is a WxW transform matrix with W=N2;
b) c(k+l) 1is a coefficient vector with W compo-
nents, i.e.

¢ (k+1) = [cl(k+1),...,cw(k+1)]t; (3)

and ¢) T, is the i-th column of T as defined in
figure 2.
Estimator:

Qk+1) = TE(k+1) (%)
Bkt+l) = &' (k) +al(x) (5)
where: a) R(k+1) 1is the estimate of the data block
x(k+1); b) &(k+1) 1s an estimate of the coefficient
vector c(k+1); ¢) €' (k) is a 'preliminary’ estimate
of the coefficient vector c(k+1); & d)a@(k) is the
quantized coefficient error.

Predictor: Pt

= 1
24 k) = PYz(k) = fe | 200 (6)

PW

where: a) Pt is a WxM predictor matrix also de-
fined in Fig, 2; b) z(k) is a M-dimensional vector
whose elements can be any subset of all previously
estimated data elements., For example in the video
illustrative example of section IV the following
subsets of past estimated data elements will be
used:
Case 1: 1In this case it 1s assumed that we
operate on lxl blocks and use immediately adjacent
past data elements, 1.e.,

2(k) = [R(k-L),R(k+1-1), R (+2-1) R} &, (7)
Case 2: We operate on 2x2 blocks and use
immediately adjacent past data elements, i.e.,

2(k) = [R, (-1), 8, (c+1-1) &, (kb1-LYR, (k42-1) ,

&, (k) ,%, ()] ©.
Case 3: 4x4 blocks are used with immediately
adjacent past data elements, i.e.,

2(k) = [R)(k-1),8; 4 (k+1-1) Ry, (k+1-1), %5 (kt1-1),

(8)

R, ) (k201 R, (1) 2 (), (), %) ()] ©5.(9)

and ¢) Pt is the i~-th row of pt which when
multiplied by the vector z(k) ylelds a predicted
estimate of the i-th coefficlent ci(k+1).
Quantizer:

aC (k) = Qlac(k))
where the operator Q(.) represents the vector
quantization of the coefficient vector error
ac(k).

(10)

IITI, Optimum Predictive Transform Coder

In this section optimum transform and pre-
dictor matrices are derived for our coder under
several constraints., We first present these
constraints, then make a mathematical statement of
the problem, and finally present its solution.
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Constraints
There are four constraints. These are:
Constraint 1: The basis vectors {T } of the
transform T will be constrained to be oréhondhal,

i.e.,
. {1 i=1
T = o L4 (13)

One reason for this constraint 1s to gilve equal
welght to the energy associated with each coef-
ficient error. Note that this constraint also
implies that T is an unitary matrix, i.e,,

R L

A second reason for this constraint is that it
results in uncorrelated coefficilent errors as
shown in appendix A, This in turn implies thak;

in applications (see Section IV) we can use simple
scalar quantizers to encode each coefficieat eftor,
i.e.,

Q(ac) = (Q (ac;(k)),...,Qac, (k)] ©

where Q (Acd(k)) represents the scalar quantization
of the goefficient error ac,(k). Note that the
scalar quantizers are not génerally optimum since
the coefficient errors often-remain statistically
dependent even if they are uncorrelated.

Constraint 2: The optimum transform and
predictor matrices must yleld coefficient error
components with zero mean value, 1i.,e,,

(14)

E[Aci(k)] =0 for all {i. (15)

The objective of this constraint is to simplify
the design of the scalar quantizer since it then
follows that we do not need to be concerned about
coefficient error elements with a nonzero mean
component, It should be noted that the constraints
(15) and (14) further imply the following con-
straint on the transform and predictor matrices:
UST, - Uyp, = 0 for all 1

where U, and Uy are unit column vectors with W and
M elemeats, respectively. This constraint can be
readily derived as follows:

First, using Fig, 2 and Eq. (14) we note that

(16

ac, (k) = Tix(k+1) . P‘i:z(k) for all 1, (17)

Second and last, taking the expected value
of Eq. (17), using constraint (15), and assuming
that the expected value of each data sample is
constant we obtain the desired result (16),

Constraint 3: The quantizer will be assumed
to work as follows: a) J arbitrary coefficlent
error components are unaffected by the quantizer,
il.e.,

8%, (k) =ac, (k) (18) '

for J arbitrary components of Ac(k) where J<{W; and

b) the remaining W-J coefficient error components

are set to zero by the quantizer, i.e.,
a8, (k) =0 (19)

for the remaining W-J components of Ez(k). The

basic advantage of this constraint is that it

makes the evaluation of the transform and predictor

matrices a mathematically tractable problem.



Constraint 4: The mean square error (MSE)

E [(x (k1) -R(k+1)) & (e (k+1) -R (k+1))] (20)

between the current picture block x(k+l) and its
estimate X (k+1) will be used as the performance
criterion that the transform and predictor matrix
should minimize. The selection of this criterion
mainly arises due to its well known mathematical
tractability properties,

Statement of Problem

The statement of the coder design problem 1s as
follows:

Given the previously stated constraints (13)-(19)
determine the transform and predictor matrices T
and P that minimize the MSE (20).

Solution:

The solution to the previously stated coder
design problem is now given in the form of a
theorem whose proof 1s given in appendix A,

Theorem 1: The transform and predictor matrices
T and P that minimize the MSE (20) subject to
constraints (13)-(19) are obtained from the
evaluation of the following matrix equations:

{E e (e+1)xb (k41)] - A}T, = NT, tel,..0 (21)
-
c 14/2, E[z(k)zt(k)] 1{2
A=|E e (k+1l)z (k)] : 1/2]°
1/2J11/2.....1/2 0
[-E [z (i) x " (1))
[1/2.0000nn. 172 (22)
and
B t 1/2 -1 t
P|= | Ef2(k)2" (k] : E[z(k)x (k+1)
1/2 T
| 172,012 0 [1/2e....az2ft
1=1,...,0 (23)

where: a) {T andj?ii are the columns of the
transform and” predictor matrices T and P; b)
E[x(k+1)x%(k+1)] 1is the second moment statistic
matrix gf the k-th data block x(k+1l); c)
E[z(k)z (kﬂ i8 the second moment statistic of the
datg elements z(k) surrounding the block x(k+1);
d) ‘E[?(k)xt(k+lﬂ is the correlation matrix
betygen the block x(k+1) and its surrounding data
elejnts z(k); e) \{ is a Lagrangi multiplier
assb@iated with the constraint T;Tj= 1 for all 1;
f) My 1s a Lagrange multiplier associated with the
zerg mean constraint (16); and g) the matrix
invb;sion shown in eqs, (22) and (23) 1is assumed to
exigt.

In addition, the minimum MSE obtained with these
matrices 1s given by
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min E [(x (k+1) -8 (k+1))  (x (k+1) -k (1) )]

I w 2
= Z E[Aci(k)J

1=J+1

= &Ti{E[‘_X(l&l)xt(l&lﬂ - A},

1=J+1

1=J+1

where )j} seee Ny are the smallestW-J eigenvalues
of the elgensystem (21). :

Also, the optimum transform and predictor
matrices result in uncorrelated coefficient
errors,

>\i (24)

1V. A Video Processing Example

In this section we apply predictive transform
coding to the interfield coding of a monochrome
image., In addition, we contrast the complexity
and performance of our coders to that of purely
predictive and purely transform coders.

The coders that will be used in our study are
the following:

Coder 1, K-L transform 2x2 coder. This coder
is the best purely transform coder that can be
obtained with a 2x2 data block (5), (7D, (9).

Coder 2, K-L transform 4x4 coder. Agaln this
coder 1s the best purely transform coder that can
be obtained with a 4x4 data block.,

Coder 3. Predictive transform 1x1 coder using
immediately adjacent past picture elements, i,e.,
equation (7). It should be noted that this coder
1s similar to that of an optimum two-dimensional
purely predictive coder (8).

Coder &, Predictive transform 2x2 coder using
immediately adjacent past picture elements, 1,e.,
equation (8).

Coder 5. Predictive transform 4x4 coder using
immediately adjacent past picture elements, i.,e.,
equation (9).

Coder 6. Simple predictive transform 2x2 coder
using lmmediately adjacent past picture elements
and with predictor and transform matrices that can
be readily implemented,

Data Base: The two black and white images shown
in figure 3 are used to generate the second order
statistics needed in the evaluation of T and P,
The images are sampled at 450 samples per line
(7.2 MHz sampling rate) and 525 lines per frame,
An interlacing procedure is used and eight bits
are assigned to each sample.

Second Order Statistics: The second order statis-
tics derived with our data base is given in table I
for a 5x5 block. Note that each entry in the
table represents the second order statistics
E[yllyjjJ for all i and j where y;: denotes an
element’ in a 5x5 picture block. The mean value of
each picture element is 143,2,

Quantizer: An optimum nonuniform quantizer (10)
based on a Laplacian density function for the
coefficients of the K-L transform (except for the
coefficients with a nonzero mean which are not
quantized) and the coefficient errors of the
predictive transform coders is employed,




Bit Rate: The bit rate used for each coder 1is 2
bits/pel.
Bit Assignment: An optimum bit assignment was
obtained for each coder using as criterion signal
to noise ratio (S/N). To search for the optimum
bit assignment we perturbed the bit assignment
which results from assigning to each coefficient
or coefficient error a number of bits which is
proportional to its standard deviation (b).
However, the coefficients of the K-L coders with
nonzero mean were always assigned 8 bits,
Coder Matrices: In figure 4 the standard deviation
and optimum bit assignments for all six coders are
given. Furthermore in figure 5 the transform and
predictor matrices of the 1lx1 and 2x2 predictive
transform coders are shown.
Simple Predictive Transform Coder: _ _
The predictor and transform matrices P and T
of the simple predictive transform 2x2 coder of
figure 5c¢ were obtained using the following
procedure, _
Step 1 The first column of the matrix T corres-
ponding to the coefficient error with the largest
standard deviation was selected to be

/s 1/2 1/2 3/6°

for two reasons. Firstly, these values are easily
implemented and secondly these values are relative-
ly close to those of the optimum transform matrix
T of figure 5b. Note that the constant 'a' in
figures 5c and 4c represents a normalizing scalar
value,

Step 2 The remaining column vectors of the
transform matrix T were found by searching for
three vectors that satisfy the following criteria:

1. The elements of each column vector belong to
the set ( T1/4,% 1/2, 3/4),

2, The elements of each column vector have signs
similar to those of the optimum elements given in
figure 5b,

3. The column vectors are orthogonal and of
equal energy. Note that when the matrix T is
multiplied by the normalizing scalar a =y8/9 we
obtain an unitary matrix T,

Step 3 An optimum predictor matrix

0.7370 -0,2913 -0,5070 -0,2983
Pk = E*= 1. -0.,2588 0.1617 0,3070 -0,0034
a J8/9" (-0.0763 0.,2417 -0.0353 -0.1518
-0,0006 0,0126 0.0510 0.0095
-0.4314  -0.9867
0.6560 -0.4180
0.2270 0.2391
0.1267 -0.1991 (25)
was derived by minimizing the mean square error
(20) subject to the following constraints:

1. The transform matrix 1s unitary and fixed
and given by T=aT where a and T are as defined in.
figure Sc.

2, The zero mean constralnt (16) for the
coefficlent error Ac is satisfied,.

3. The quantizer 1is assumed to work as speci-
fied by equations (18) and (19).
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Step 4 The predictor matrix (25) was approximated
by the matrix P given in figure 5c. It should be
noted that the elements of T besides being readily
implementable also approximately satisfy the zero
mean constraint (16),
Step 5 The simple predictive transform ‘encoder'’
is implemented as shown in figure 6, Note that
this type of implementation avolds the need to
multiply by the normalizing constant a,
Coder Performance and Complexity

In Table II the complexity of all six coders is
given in the form of the number of multiplications,
additions or subtractions required for the physical
implementation of each coder. Note that in the..
case of the simple predictive transform coder the
elements of the matrices T and P result in multipl-
lcations that can be easily implemented by addlﬁion
or subtractions or by shifting the conteats of ¥
register, N

In Table II the performance of each coder is #lso
given using as objective criterioun the signal ]
noise ratio (S/N)

L2

S/N = 10 1og10{2552/[2:’f
=T 3=

where W, L, and %,(i) are as defined in figure 1,
and the units of J S/N are in decibels (dBs),
Note that the coders are organized according to
their S/N ratio.,

When the processed images generated by the above
six coders were viewed in a standard 9 inch studio
monitor the following results were obtained.

1. The K-L 2x2 coder resulted in processed
images with significant blocking effects (5). The
blocking effect was less severe with the K-L 4x4
coder but still noticeable, See figure 3c where
the blocking effect can be seen on the boy's
shoulders,

2, The optimum two-dimensional purely predictive
coder, i,e., coder 3, resulted in an image with
significant lack of detail (5).

3. The predictive transform coders, including
the simple predictive transform coder, resulted in
good quality processed Images. See figure 3d where
the simple predictive transform coder was used to
generate the processed image. .

Summary of Results:

We draw the following conclusions from our
i1lustrative example:

1, Predictive transform coding results in
readily implementable coders withhigh reproduction
fidelity at significant compression rates. The
coder that best symbolizes these properties is
coder 6, l.e., the simple predictive transform
2x2 coder,

2, Predictive transform coders should be used
for coder evaluation purposes rather than the
classical K-L transform coders (7), (9). Note
from table II that both the complexity and per-
formance associated with the simple predictive
transform 2x2 coder dre superior to that of the
K-L 4x4 coder.

W
iy 2 2
7y ()-8, 0%/ Y}




Appendix A

In this appendix it is shown that the optimum
transform and prediction matrices are found from
Eqs. (21)-(23) and that the minimum MSE is given
by (24), It is also shown that these optimum
matrices yleld uncorrelated coefficient errors,

The proof consists of the following eight steps.

Step 1: Making use of Eqs, (2), (4), (5), & (6)
and the quantizer constraints (18) and (19) we

have that
>
= T, ac, (k)
S bt

where J represents the number of coefficient error
components unaffected by the quantizer.

Step 2: Using (A.l) in the expectation (20) we
obtain

= E[(x (k1) -x (kc+1))  (x (It ) = (k+1) )]

W W
= TTEAc(k)Ac(k)J
1J+13=:J4:-113[

Step 3: Using the orthonormal constraint (13)
we derive

W
2

P_ = Eflac (k)

I igl-l [oc} o]

x (k+1)=R(k+1) (A.1)

PI
(A.2)

(A.3)

Step 4: We make use of Eq., (17) to obtain
Bfact ()] = GLELy (et1)y® e+ )]G, (A.4)
where

» v D) =250 xaet)]  AL5)

t_ .t
6= [p;1y

Step 5: Lagrange multipliers are used to form-
ulate the minimization of (A.4) with respect to
the vector Gi and subject to constraints (13) and
(16)., That 1s, we have the following minimization
to perform

min
e +1...Gw£ Ji;, {G E[y (k+1)y (k+1)]c

)\i(T T - i[u;'r 1-U;p i]}}

whq;? Ai and/u1 are lagrange multipliers,

(A.6)

6: Using standard minimization techniques
(14} the minimization (A,6) 1s performed yielding
theg desired equations (21) thru (23).

7: We now obtain the minimum MSE express-
lony 124) as follows'

K*FSCIY’ G E[y(k+1)y (k+lﬂ(; is expanded to
obtain

GLELy (kt Dy (1)) 6,

= TRl (=" (kt1dr, + PE L)z (k) P,

“PE[2 ()x" (D) T, - TEE fe(et1)z " (k)
(A.7)
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Se%ondly, expression (23) 1s solved for
Efz(k)x (k+1)] T, to yield

1/2{[p
Efz()ztk) ;|| L (A.8)
12|y

uged in (A.7) to

E[z(k)xt(k+1ﬂTi=
Thirdly, expression (A.8) is

yleld
T‘i:{E Cx (k1) x " (kc+1)] -A]Ti
(A.9)

GEE[y(k+1)yt(k+1)] G, =

where A is given by (22).

Lastly, maklng use of the eigensystem
expression (21) and the orthondmal comstraint (14)
in (A.9) we find that

GLE[y (+D)y (k1] 6, = A, (A.10)
which implies the desired result (24).

Step 8: Next, we show that the optimum trans-
form and predictor matrices result in uncorrelated
coefficient errors,

Firstly, using an approach similar to that of
gteps 4 thru 7 it 1s shown that

B [, ()ae, ()] = Tt{E Be(k+D)x" (k+1)] -A} T,
(A.11)
where Ty, E[x(k+1)x (k+1)J , and A are as defined
for (21).
Secondly, using (21) in (A.1l1) we find that
(A,12)

EEac (k)ac, (k)] = = N\,T.T, for all i,j

111

Thirdly and last, using the orthonormal condi=-
tion (13) in (A.12) we have the desired result

E[_ch(k)dci(k)] = 0 for all 1 # J. (A.13)
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