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Linear predictive transform
of monochrome images

ErIan_H Feria

Digital monochromatic images are encoded using a novel
minimum mean square error (MSE) linear predictive
transform (LPT) coding formulation. The new formu-
lation is appealing for two important reasons. First, it
leads to simple coder implementation with a satisfactory
signal-to-noise ratio (SNR). Second, it provides a general
theoretical framework from which minimum MSE predic-
tive coding and minimum MSE transform coding arise
as special cases. Some specific results of this paper that
illustrate the previous ideas are: a simple and generally
suboptimum two-dimensional LPT coder operating at
2 bit pixel™! has approximately one third the complexity
of a4 X 4 Hadamard coder while yielding a better SNR;
an optimum 2D LPT coder operating at 2 bit pixel™!
has approximately one sixth the complexity of a 4 X 4
Karhunen—Loeve transform (KLT) coder while yielding
a better SNR.

Keywords: image coding, predictive transfer coding, video
processing, monochromatic images

The last two decades have seen great activity in the
field of digital video processing where a major goal has
been the design of easily implementable coders with
satisfactory picture quality at reasonable bit rates. To
address this problem three major classes of coding tech-
niques have been offered. These are predictive coding’,
transform coding? and predictive transform coding?. Pre-
dictive coding has been found to be readily implemen-
table?, but its performance is often unsatisfactory at low
bit rates. On the other hand, transform coding® yields
better picture quality at low bit rates but is more difficult
to implement due to the need to transform relatively
large picture blocks. For example, a 4 x 4 or higher
sized picture block must be transformed when using a
two-dimensional (2D) transform. To obtain a compro-

Department of Applied Sciences of the College of Staten Island, City
University of New York, 130 Stuyvesant Place, Staten Island, NY
10301, USA

mise between the best qualities of these two classes of
coders, several types of hybrid predictive transform
coders have been offered such as those by Habibi®,
Haralick and Shanmugan®’ and Watson et al.®. Yet these
schemes are still too complex when compared with
simple 2D linear predictors* or a separable 4 x 4
Hadamard transform coder.

This paper presents a minimum mean square error
(MSE) linear predictive transform (LPT) coding formu-
lation which in its simplest version yields a good trade-
off between the best qualities of predictive and transform
coding. The minimum MSE LPT coding formulation
also provides a general framework which contains
classical minimum MSE predictive coding and classical
minimum MSE transform coding as special cases. The
proposed LPT formulation of this paper is applied to
the coding of digital monochrome images. For these
images, intrafield LPT coders that use 2D transforms
to operate on 2D picture blocks have been designed.
These coders have two general properties.

® They predict the transform coefficients by making
linear transformations of the previously estimated
pixels surrounding the block to be transformed.

® The transform and predictor matrices of the LPT
coders are designed such that the coefficient errors
between the transform coefficients and their estimates
have the following two properties: they are uncorre-
lated or almost uncorrelated, and their mean value
is zero. These properties allow simple unbiased scalar
quantizers to be used to encode the coefficient errors.

In particular, it is found that a simple and generally
suboptimum LPT coder operating at 2 bit pixel™! has
approximately one third the complexity of a 4 x 4
Hadamard coder while yielding a better signal-to-noise
ratio (SNR). Another result is that an optimum LPT
coder operating at 2 bit pixel™' has approximately one
sixth the complexity of a 4 x 4 KLT coder while yielding
a better SNR performance.

For a comprehensive survey of the application of pre-
dictive coding, transform coding and predictive trans-
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form coding to the bandwidth compression of video
signals see Jayant and Noll’ and Clarke'”. Several
standards papers in predictive coding, transform coding
and predictive transform coding are referenced through-
out this paper, Of special interest is a paper by Netravali
et al." in which a predictive transform scheme with 2
x 2 Hadamard coefficients is developed; however, this
work used intuitive ideas to design the coder, excluding
quantizer, rather than the analytical minimum MSE
approach used in this paper,

The rest of this paper is organized as follows. The
general structure of an LPT coder is illustrated using
a 2D transform. The minimum MSE LPT coding formu-
lation is presented and the optimum LPT coder derived.
It is also shown that classical minimum MSE predictive
coding and classical minimum MSE transform coding
are special cases of the proposed LPT formulation. LPT
coders that are easier to implement are derived using
the optimum LPT coder as a basis. Then, LPT coders
are illustrated via various examples. The paper ends by
summarizing the most important results.

LPT CODER STRUCTURE

In this section the general structure of an LPT coder
is illustrated using a 2D transform. It should be kept
in mind, however, that this general structure remains
essentially intact when using either simpler 1D trans-
forms or more complex 3D transforms.

Figure 1 illustrates with 2 x 2 picture blocks the
notation that will be used to represent consecutive
N % N picture blocks of a picture field. From this figure
note that x(i) denotes the jth picture element in the
ith picture block, moving from left to right and top
to bottom in the block; the ith picture block is fully
defined by the W-dimensional column vector

x,(k—L) x,k—L)
Xy(k—L) x(k—L)

[ x(k+1-L) xk+1-L)]

| xy(k+1-L) xk+1—L)_]

T xk+2=L) x(k+2—L) ]

| x(k+2—L) x(k+2-L)_

l:x.(k) x,(k) xk+1)  xk+1)
xk)  x,k) xk+1)  x(k+1)

x() = [x,(), ..., x )] for all i

Figure 1. Notation used to represent consecutive 2 X2
picture blocks of a picture field. The integer L represents
the number of 2 x 2 picture blocks associated with each
set of two consecutive scanning lines. x(k — L), x(k
+ 1~ L), x(k+ 2— L)andx(k) are all the immedia-
tely adjacent past picture blocks to the current picture
block x(k + 1)
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x()) =[x, (@), ..o, xu D] for all i

where W = N% x(k — L), xtk + 1 — L), x(k +
2 — L) and x(k) are all the immediately adjacent past
picture blocks to the current picture block x(k + 1)
The integer L denotes the number of N X N picture
blocks that are associated with each set of N consecutive
scanning lines.

Figure 2 shows the structure of the proposed LPT
coder where the defining expressions for the transform,
estimator, predictor and quantizer subsystems are as
follows.

Transform

ek + 1) = R 'x(k + 1) (1)
or

x(k + 1) = Re(k + 1) = ,i rc(k+ 1) )

where R is a W x W transform matrix with W
W-dimensional column basis vectors {r}, i.e.

R=1[r,...."

and e(k + 1) is a W-dimensional coefficient column
vector, i.e.

ck + 1) = [e(k + D,...,cplk + DT 3)
Estimator

&k + 1) = Re(k + 1) @

&k + 1) = ¥'(k) + Se(k) (5)

where &(k + 1) is the estimate of the picture block
x(k + 1); &k + 1) is the estimate of the coefficient
vector e(k + 1); (k) is a ‘preliminary’ estimate of the
coefficient vector e(k + 1); and d&(k) is the quantized
coefficient error.

Predictor
- pwl"z(k) (6)

where P is an M x W predictor matrix with W
M-dimensional column vectors {p}, i.e.

(k) = Plz(k) = [py, - -

P=1[p, > Pul

(k) is an M-dimensional column vector whose elements
can be any subset of all previously estimated picture
elements. For example, where several coders are com-
pared (see below), the following two subsets of past
estimated pixels are used.

In the first case it is assumed that the LPT coder
operates on 2 x 2 picture blocks as shown in Figure
I. The prediction of each transform coefficient
¢/(k + 1) for all i is made using all six past pixels imme-
diately adjacent to the pixel block x(k + 1). These §ix
past pixels are the elements of the z(k) column vector

image and vision computing



Encoder

1 * Q i

—_— ] . uantizer

x (k+1) R clk +1) b 6c (k) 5c (k)

Transform - LA
¢’ (k)
rr—— —F~>~—F~~——— - - 077 =
: +y I
] pT Memory R ) | l
| 20) R (k) Rk + 1) Slk+1) |
)
r + l
!
| Predictor Estimator I
} |
i |
Ce o _
e Decoder

Rk + 1)

Figure 2. Linear predictive transform (LPT) coding structure. The decoder structure is similar to that of the feedback

part of the encoder that is enclosed within the dashed lines

2(k) = [x4k — L), x3(k + 1 — L), x(k + 1 — L),
X,k + 2 — L), x,(k), x,(k)]" ™
In the second case the LPT coder operates on 4 X
4 picture blocks and uses all immediately adjacent past
pixels, i.e.
z(k) = [xislk — L), x5k + 1 — L),
xM(k + 1 - L), X|5(k + 1 - L),
X6k + 1 = L), x;3(k + 2 = L), x,(k),
xg(k), x13(k), x16(R)]" €)
The ith element pTz(k) of the W-dimensional column

vector &'(k) is a preliminary estimate of the coefficient
element ¢k + 1).

Quantizer

Sc(k) = Q [5e(k)] (10)

where the operator Q represents the vector quantization
of the coefficient error vector de(k).

OPTIMUM LPT CODER

In this section a minimum MSE approach is used in
the derivation of an optimum LPT coder. First, the basic
mathematical constraints that are used in the generation
of the optimum LPT coder are discussed. Then a mathe-
matical statement of the minimum MSE LPT coding
problem is presented and the optimum LPT coder is

vol 5 no 4 november 1987

given in the form of a theorem. The proof of the theorem
is provided in Appendix 1. The section ends by showing
that classical minimum MSE predictive coding and
classical minimum MSE transform coding are special
cases of the proposed LPT formulation.

Constraints

There are four optimum LPT coder constraints.

Constraint 1. The basis vectors {r} of the transform
matrix R will be constrained to be orthonormal, i.e:

_ {1
T 0

or equivalently, the matrix R is unitary, i.e.

R'=R" (12)

H

One reason for this constraint is to give equal weight
to the energy associated with each coefficient error. This
in turn simplifies the analysis, as can be seen in Appendix
1. A second reason for this constraint is that it results
in uncorrelated coefficient errors as shown in Appendix
1. This in turn implies that we can approximate the
vector quantizer (Equation (10)) operating on the coeffi-
cient error vector dc(k) by the simple scalar quantizers

Q [de(k)] = {Ql8e\(K)], ..., Quw [Bewli)]} (13)

where Q[d¢,(k)] represents the scalar quantization of the
Jth coefficient error dc/k). Note that the scalar quantizers
are not strictly optimum since the picture elements are
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well known to have jointly nonGaussian distributions.

Constraint 2. The optimum transform and predictor
matrices must yield coefficient error components with
zero mean value, i.e.

Edc(H] = 0 for all i (14)
The objective of this constraint is to simplify the design
of the scalar quantizer since it then follows that we
do not need to be concerned with coefficient error
elements that have a DC component. It should be noted
that the above unitary constraint (Equation (12)) and
the zero mean constraint (Equation (14)) imply the fol-
lowing linear relation between corresponding column
vectors in the transform and predictor matrices R and
P

vir, — wp, =0 for all { (15)

where v, and v,, are unit column vectors with W and
M elements, respectively. This linear relation can be
readily derived as follows: first using the unitary con-
straint (Equation (12)) and Equations (1) and (6) the
following expressions are obtained for the ith coefficient
c(k + 1) and its prediction &(k)

clk + 1) =fx(k + 1)
c(k) = pf 2(k)

Second, using the above relations in the coefficient error
expression

Sck) = c(k + 1) — & (k)
we obtain

dcik) = Mx(k + 1) — plz(k) for all i (16)
Finally, taking the expected value of Equation (16), using
the constraint of equation (14), and assuming that the
expected value of each picture sample is constant, we
obtain the desired result (Equation (15)).

Constraint 3. The quantizer will be assumed to work
as follows. J arbitrary coefficient error components are
not quantized, i.e.

Sck) = (k) (17)

for J arbitrary components of 8c(k) where J<W. The
remaining W - J coefficient error components are
set to zero by the quantizer, i.e.

Sci(k) = 0 (18)

for the remaining W — J components of dc(k). The
basic advantage of this constraint is that it makes the
design of the optimum transform and predictor matrices
a mathematically tractable problem. Clearly, after we
design our transform and predictor matrices the above
quantizer constraint is removed and standard linear or
nonlinear quantizers are designed for the LPT coder.
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This approach is analogous to what is done in the design
of KLT coders®.

Constraint 4. The mean square error (MSE)
E(x(k + 1) — &k + D' x(k + 1) — ¢ + DI} (19)

between the current picture block x(k + 1) and its esti-
mate &(k + 1) will be used as the performance criterion
that the optimum transform and predictor matrix should
minimize. The selection of this criterion arises due
mainly to its well known mathematical tractability
properties.

Statement of the problem and its solution

The problem is that given the previously stated
constraints of Equations (11)-(18), the transform and
predictor matrices R and P that minimize the MSE con-
straint of Equation (19) must be determined. The
solution to the previously stated optimum LPT coder
problem is given below in the form of a theorem whose
proof is given in Appendix 1.

Theorem 1

The transform and predictor matrices R and P that mini-
mize the MSE constraint of Equation (19) subject to
the constraints of Bquations (11)—(18) are obtained from
the evaluation of the following matrix equations

for all i

{Elx(k + Dx"(k + 1)} — Ajr; = Agx,
. (20)

with

1727 127!
A= [E[x(k + Dz'(k)] [EIz(k)zT(k)]l/?2
1240L12...12 0

[ EatoxTk + 1) :
L1212 @h

and

1/2 1-!
Pi : oxT(k + 1] |
| = | Bzt k) } [EW )XT( :lr.
[u'] [1/2...1/2 e 2 ... 12

foralli (22)

where {r} and {p} are the columns of the optimum
transform and predictor matrices R and P; E[x(k + 1)
x"(k + 1)] is the second-order statistics matrix of the
picture block x(k + 1); E[z(k)z"(k)] is the second-order
statistics matrix of the past picture elements z(k);
Elz(k)x"(k + 1)] is the correlation statistics matrix
associated with the block x(k + 1) and its surrounding
picture elements z(k); A, is a Lagrange multiplier
associated with the orthonormal constraint of Equation
(11); and w, is a Lagrange multiplier associated with

image and vision computing



the zero mean constraint of Equation (15). The matrix
inversion shown in Equations (21) and (22) is assumed
to exist.

In addition, the minimum MSE obtained with these
matrices is given by

nl}ilp E{x(k + 1) — &k + D]"[x(k + 1) — &(k + D]}

14

= ) EI3ci(k)]
i=J+1
W
= Yr{Ex(k + 1) x"(k + 1] — A,
i=j+1
W
=Y\ (23)
i=j+1
where A, , | ..., Ay are the smallest W — J eigenvalues

of the eigensystem of Equation (20). Note from Equation
(23) that the variance of dc(k) is given by the eigenvalue
A L€,

E[3ci(k)] = N, (24)

Finally, the optimum transform and predictor matrices
result in uncorrelated coefficient errors.

Illustrative example

For an LPT coder operating on 2 X 2 picture blocks
the optimum transform matrix, optimum predictor
matrix and standard deviation of each coefficient error
are presented. In the prediction of each transform coeffi-
cient the 2 X 2 LPT coder uses all six immediately
adjacent past pixels to x(k + 1) (see Figure 1 and
Equation (7)). The second-order statistics of two images
are used in the design of the optimum transform and
predictor matrices.

Database

One of the two monochromatic images that are used
to generate second-order statistics is the ‘boy picture’
shown in Figure 3a. The other image is another ‘boy
picture’ with considerably more detail than that shown
in Figure 3a. The two images were developed via an
NTSC monochromatic TV camera. The pictures were
sampled at 525 lines per frame, 450 samples per line
(7.2 MHz sampling rate) and 8 bit per sample. They

i
111 A

Figure 3. a, original image (8 bit per sample); b, 4 X 4 Hadamard image (2 bit per sample); ¢, simple 2 X 2
LPT image (2 bit per sample),; 4, enlargement of simple 2 x 2 LPT and 4 x 4 Hadamard images
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are also interlaced. In addition, the synch. and blanking
information of the pictures are not used in the acquisi-
tion of second-order statistics nor in the evaluation of

coder performance.
Second-order statistics

The second-order statistics derived with our database
are

Elx(k + Dx"k + 1)] =

(“21236 21213 21213 21193
21213 21236 21193 21213
21213 21193 21236 21213
| 21193 21213 21213 21236
Elz(b)z’ (k)] =
21236 21213 21173 21137 21213 211737
21213 21236 21213 21173 21193 21156
21173 21213 21236 21213 21156 21127
21137 21173 21213 21236 21123 21098
21213 21193 21156 21123 21236 21213
| 21173 21156 21127 21098 21213 21236_
Ex(k)z' (k)] =
(_2I193 21213 21193 21156 21213 21193-
21156 21193 21213 21193 21173 21156
21156 21173 21156 21127 21193 21213
21127 21156 21173 21156 21156 21173

Optimum transform and predictor matrices

The optimum transform and predictor matrices are

02523 07182 —0.0130  0.6484
R= |04316 02680 -—0.7157 —0.4792
0.4304  0.3008  0.6981 —0.4867
0.7515 —0.5673  0.0156  0.3363

(25)
11591 0.6210 —0.0102  0.0034
—0.5670 —0.8238 —0.5169 —0.1474
p—|—-08582 01369 06617 0.1038
-0.1001 00221 —00178  0.0366
—0.5043  —0.8136  0.5412 —0.1762
~0.9955  0.1377 —0.6430  0.1612

(26)

Standard deviation matrix

The standard deviation of the four coefficient errors
is given by
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Ty o] 919 266
S = [(M)’ (xi)i} = [2.53 1.30il @7

Two special cases

It is now shown that both classical minimum MSE
predictive coding and classical minimum MSE transform
coding are special cases of the LPT formulation.

Predictive coding

The general structure of a predictive coder® is given in
Figure 4. The design equation for the predictor matrix
P is in turn given by

)

where p,, u, z(k), x(k + 1) and the expectations are
as defined for Equation (22). Note that x(k + 1) is
now a scalar rather than a vector since predictive coding
encodes one sample at a time. ,

The predictive coding structure and its corresponding
design equation are now shown to be special cases of
the LPT formulation. To obtain the predictive coding
structure, i.e Figure 4, we simply replace the transform
matrix R in Figure 2 by a unity gain. Also, each vector
variable in Figure 2, eéxcept for the past estimate vector
z(k), is replaced by a scalar variable corresponding to
that used in the predictive coding structure. The design
equation for the predictive coding matrix P given above
is readily obtained from the LPT design Equation (22)
by replacing the vector x"(k + 1) by the scalar
x(k + 1) and the eigenvector r; by a unity gain.

1/2 -
Aoz ()] LE{z(k)xT(k + 1)1}
12 12 ... 12

/2 ...12 0

for all {

Transform coding

Figure 5 shows the general structure of a.transform
coder’, The corresponding design equation for the trans-
form matrix R is the eigensystem

Elxtk + Dx"(k + D, = Ax;

where r, %, and the expectation are as defined for
Equation (20).

Transform coding can be easily derived from the LPT
formulation. First the transform coding structure of
Figure 5 is obtained from the LPT coding structure of
Figure 2 by simply eliminating the encoder feedback
enclosed with dashed lines. On the other hand, the design
equation for the transform matrix R given above is easily
derived from Equation (20) by dropping the matrix A,
Note that the matrix A is a function of the correlation
between presently processed and formally processed
picture data. In transform coding this correlation infor-
mation is not used in the coder design.

image and vision computing



Encoder

5P

. Quantizer
x{k + 1) / 8 x (k) 5 x (k)
-4
X'(k)
e e = - i e
|
- pT Memory =
: z (k) e R ) Xk +1)
|
|
[ Predictor
|
|
|
L e el e T e T e e LA Tl e B e ] S i -
«+— 1 Decoder

Rk +1)

Figure 4. Linear predictive coding structure. The decoder structure is similar to that of the feedback part of the

encoder that is enclosed within the dashed lines
SUBOPTIMUM LPT CODER

In this section an LPT coder that is easier to implement
and generally suboptimum is derived under several con-
straints. This coder is used in the next section to derive
an even simpler LPT coder.

Constraints

The five suboptimum LPT coder constraints are as
follows.

Constraint 1. The transform matrix R is assumed to
be fixed. In this paper the transform matrix will be
assumed to be the Hadamard transform matrix which
is separable and can be implemented with at most
Wlog, W additions or subtractions.

Encoder
—» g1 = Quantizer —
x(k+1) clk + 1) clk + 1)
Decoder
-] R -
X(k+1)

Figure 5. Linear transform coding structure
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Constraints 2-5. Similar to constraints 14 for the
optimum LPT coder except that R is fixed (see Equations

(11)-(18)).

Statement of the problem and its solution

Given the previously stated constraint of Equations
(11)~(18) and assuming that the transform matrix R is
fixed, determine the predictor matrix P that minimizes
the MSE (Equation (19)). Note that in general the coeffi-
cient error will be correlated. The solution of the sub-
optimum LPT coder_problem is now given in_the form.
of a theorem whose proof closely follows the one given
in Appendix 1 for Theorem 1. For conciseness the proof
for this theorem is not given here.

Theorem 2

The predictor matrix P that minimizes the MSE
(Equation (19)) subject to the constraints of Equations
(11)—(18) and fixed R is given by

121"
[p,} _ | Ez(k)z" (k)] [EIz(k)xT(k + 1)]}[
w 12 12 ... 1)
1/2 ... 172 0
for all / (28)

where {p;}, {4}, Elz(k)z"(k)] and E[z(k)x"(k + 1)] are
as defined above for Equation (22); and {r;} are the basis
vectors of the assumed transform matrix R.

In addition, the minimum MSE obtained with the
optimum predictor matrix is given by
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mli’n E{x(k + 1) — &(k + D]'[x(k + 1) — &(k + D}}
w
= 2, H5¢(K)]

= 3 ri{Elx(k + 1)x"(k + 1)] — A}r, (29)

i=J+1

where A is given by Equation (21).

lllustrative example

Again the LPT coder is assumed to act on 2 X 2 picture
blocks and to use all six immediately adjacent past pixels
to x(k + 1) in the prediction of each transform coeffi-
cient. Also, the database used to design the coder is
the same as that introduced in the ‘illustrative example’

above.

Transform matrix

The selected transform matrix is the easily implement-
able Hadamard transform matrix

12 12 12 12
R= |12 —12 12 -1p2 (30)
12 12 —172 —1)2
1/2 -12 =12 1/2
Predictor matrix

The following predictor matrix was derived when we
assumed the suboptimum transform matrix Equation
(30):

1.3050 0.1128 0.1083 —0.0444
—0.8229 —0.7817 —0.0256 —0.0170
P=] 07554 0.7790 —0.1612 0.0185 }(31)
—0.0850 0.0329 0.0575 0.0238
—0.7689 —0.0621 —0.8025 ~—0.0321
—0.8728 —0.0809 0.8236 0.0513

Standard deviation matrix

The standard deviation matrix of the suboptimum LPT
coefficient errors is given by

[8.63 3.39
SD *[3.37 1.53} (32)

SIMPLE LPT CODER

This section describes the construction of a simple LPT
coder using the suboptimum LPT coder as a basis.

Illustrative example

The simple LPT coder is illustrated using the sub-
optimum 2 X 2 LPT coder of the previous section.
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The transform and predictor matrices of the subopti-
mum 2 X 2 LPT coder are given by Equations (30)
and (31).

Transform matrix

The transform matrix of the simple LPT coder is the
same as that used for the suboptimum 2 X 2 LPT coder

(Equation (30)).

Predictor matrix

The predictor matrix is derived by roughly approxitmat-
ing the predictor matrix of the suboptimum 2 x 2 LPT
coder (Equation (31)) with an easily implementable
matrix. The simple predictor matrix is

2 0 0 0
-1 -1 0 0
p_| -1 1 o0 o0 (33)
0 0 0 0
-1 0 -1 o0
-1 0 1 0

and satisfies the zero mean constraint of Equation (15).

Standard deviation

The standard deviations of the simple LPT coefficient
errors are given by

_[9.60 3.84 ' 4

SD = [3.84 1.67] (34
RESULTS

-- Coders

The following coders are compared:

optimum 2 x 2 KLT coder

4 x 4 Hadamard coder

optimum 4 X 4 KLT coder

simple 2 x 2 LPT coder of the illustrative example
above (see Equations (30), (33) and (34))

optimum 2 X 2 LPT coder illustrated above (see
Equations (25)-(27))

® optimum 4 x 4 LPT coder using all immediately
adjacent past pixels (see Equation (9))

Database
The database used to obtain the second-order statistics

of all coders is similar to that used in the jllustrative
examples above.

Quantizer

An optimum nonuniform quantizer'? based on Laplacian

imaoe and vicinn romnutine



density functions for the coefficients of the Hadamard
and KLT coders (except for the DC coefficients which
are not quantized) and the coefficient errors of the LPT

coder is employed".

Bit rate

The bit rate used with each coder is 2 bit pixel ™',

Bit assignment

An optimum bit assignment was obtained for each coder
using as subjective criterion the blocking effect produced
on our database as viewed on a standard 23 cm studio
monitor. The approach employed to search for the best
bit assignment was to perturb the bit assignment”,
{<m;>}, with w

v, (ogs) _ o

m = 3 5 5T foralli (33)

where <m,> is the nearest integer to m, and denotes
the number- of bits assigned to the ith coefficient
¢k + 1) of the Hadamard or KLT coders (in the case
of the LPT coders <m;> denotes the number of bits
assigned to the ith coefficient error d¢/(k)); V is the total
number of bits assigned to each coefficient (or coefficient
error) block; W is the number of samples in each coeffi-
cient (or coefficient error) block; and s; is the standard
deviation of the ith coefficient ¢(k + 1) (or the ith
coefficient error dc,(k)). After the set of integers { <m;>}
are found they are judiciously adjusted such that

It should be noted that the DC coefficients of the
Hadamard and KLT coders were always assigned 8 bit,
although in the actual simulation the quantizer did not
quantize the DC coefficients.

Standard deviation and bit matrices

In Figure 6 the standard deviation and optimum bit
assignment matrices of all the coders are given.

Coder performance

The performance of each coder is evaluated using both
objective and subjective criteria.

Objective criterion

The objective criterion used was the decibels SNR which
is defined as
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where L is as defined for Figure 1 and W is the number
of pixels in a picture block. Table 1 presents the SNR
that is obtained when the database is processed with
each coder. Note that the coders are organized in this
table according to their SNR. The following results are
noted.

® The optimum 2 x 2 LPT coder results in a SNR
at least 0.5 dB better than the optimum 4 X 4 KLT
coder.

@ The optimum 2 x 2 LPT coder is only 1 dB away
from the optimum 4 X 4 LPT coder which is 10
times more complex.

e The simple 2 x 2 LPT coder yields an SNR superior
to that of the Hadamard coder.

Subjective criterion

The blocking effect that is observed in the processed
images is used as the subjective criterion. The following
results were obtained.

® The optimum 2 x 2 KLT and 4 x 4 Hadamard
coders yield processed images with quite noticeable
blocking effects. Figure 3b shows the processed image
produced by the 4 x 4 Hadamard coder.

® The optimum 4 x 4 KLT coder results in a smaller
blocking effect than the optimum 2 % 2 KLT and
4 x 4 Hadamard coders.

e All the LPT coders result in improved picture quality
with considerably less blocking effects (see Figure 3¢
where the simple 2 x 2 LPT coder was used to gener-
ate the processed image; a split screen enlargement
of Figures 3b and c is given in Figure 3d).

Coder complexity

The coder complexity is measured by the number of
multiplications, additions and subtractions required by
each coder in the evaluation of each picture block esti-
mate x(k + 1). Table 1 presents the encoder complexity
associated with each coder, from which the following
results are highlighted.

® The optimum 2 x 2 LPT encoder requires approxi-
mately one sixth of the operations needed by an
optimum 4 X 4 KLT encoder.

® The simple 2 x 2 LPT encoder complexity is close
to one third that of the 4 x 4 Hadamard encoder.

CONCLUSIONS

In this paper a minimum MSE predictive transform
coding formulation has been developed and found to
be appealing for two fundamental reasons.

® The LPT formulation leads to the design of simple
coder implementations with satisfactory SNR perfor-
mance.

® The new formulation provides a general theoretical
framework from which classical minimum MSE
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Figure 6. Standard deviation matrix (SD) and optimum bit assignment matrix (B) for the coders: a, optimum
2 X 2 K-L coder case; b, 4 x 4 Hadamard coder case; ¢, optimum 4 % 4 K-L coder case; d, simple 2 x 2
LPT coder case; e, optimum 2 X 2 LPT coder; f, optimum 4 x 4 LPT coder
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APPENDIX 1: PROOF OF OPTIMUM LPT
CODER DESIGN EQUATIONS

This appendix shows that the optimum transform and
predictor matrices are found from Equations (20)-(22)
and that the minimum MSE is given by Equation (23).
It is also shown that the optimum transform and pre-
dictor matrices yield uncorrelated coefficient errors. The
proof consists of eight steps.

Step 1. Making use of Equations (2), (4)~(6) and the
quantizer constraints of Equations (17) and (18) gives

xtk + 1) — &k + 1) = % rdek) (36)

i=J+1
where J represents the number of coefficient error
components unaffected by the quantizer.

Step 2. Using Equation (36) in Expression (19) gives
MSE = E{[x(k + 1) — &(k + D]"[x(k + 1) — &(k + )]}

=3 3 1 ELe ) b) a7
=T =g+

Step 3. Using the orthonormal constraint of Equation
(11) we find

MSE = fE[aci.(k)] (38)

i=J+1
Step 4. Making use of Equation (16) in Equation (38)

gives

W W
2 EBAK)] = 3 ¢ Elyk + Dy'(k + Dlg, (39

i=J+1 i=J+|

where

q; = [~ pir] (40a)
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and

yitk + 1) = [27(k) x"(k + 1)] (40b)

Step 5. Lagrange multipliers are used to formulate the
minimization of Equation (39) with respect to the vectors
q;+1, 5y and subject to the constraints of Equations
(11) and (15), i.e. the following minimization has to
be performed

4 w
q,f?.‘.’.’qw{ Y QT Ey(k + 1) yT¢k + 1)) q,

i=J+1

- A - 1) — u(Wpx; — VAZP:‘)}} 41)

where A; and u; are Lagrange multipliers.
Step 6. Using standard minimization techniques' the
minimization of Expression (41) is performed yielding
the desired Equations (20)—(22).
Step 7. The minimum MSE Expression (23) is now
obtained. First qTE[y(k + 1yT(k + 1)] q, is expanded
to obtain

qEly(k + 1)y'(k + 1) g

= riEx(k + Dx"(k + DI, + pIE [2(k)z"(K)]p;

— PLE[z(k) x"(k + DI, — riE[x(k + 1) 2'(k)lp; (42)
Second, Equation (22) is solved for Efz(k)x"(k + 1)]r;
to yield

112 71 p, |
E[z(k)x"(k + Dlr; = ETZ(k)ZT(k)]/E (43)
12 :
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Third, Equation (43) is used in Equation (42) to yield

q"Ely(k + 1) y'(k + 1)q,
=rYE[x(k + D) x"(k + 1)] — A)r; (44)

where A is given by Equation (21). Last, making use
of the eigensystem in Equation (20) and the orthonormal
constraint of Equation (11) in Equation (44) gives

qElyk + Dy'(k + Dlgi =N (45)
which implies the desired result (Equation (23)).

Step 8. Next, it is shown that the optimum trangform
and predictor matrices result in uncorrelated coeffidlent
errors, First, using an approach similar to that of sleps
4 and 7 it is shown that )

E[8c(k)dc (k)]
= (YEx(k + 1) xT(k + 1)] — AJr, (46)

where 1, E[x(k + 1) x"(k +1)] and A are as defined
for Equation (20). Second, using Equation (20) in
Equation (46) it is found that

E[dc(k)defk)] = Ax'r; for all i and j 47

Last, using the orthonormal condition of Equation (11)
in Equation (47) gives the desired result

E[8c(k)dc; (k)] = 0 for all i # j (48)
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